Krylov subspace estimation

نویسنده

  • Michael K. Schneider
چکیده

Computing the linear least-squares estimate of a high-dimensional random quantity given noisy data requires solving a large system of linear equations. In many situations, one can solve this system e ciently using a Krylov subspace method, such as the conjugate gradient (CG) algorithm. Computing the estimation error variances is a more intricate task. It is di cult because the error variances are the diagonal elements of a matrix expression involving the inverse of a given matrix. This paper presents a method for using the conjugate search directions generated by the CG algorithm to obtain a convergent approximation to the estimation error variances. The algorithm for computing the error variances falls out naturally from a new estimation-theoretic interpretation of the CG algorithm. This paper discusses this interpretation and convergence issues and presents numerical examples. The examples include a 10-dimensional estimation problem from oceanography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Covariance Matrices for Constrained Nonlinear Large Scale Parameter Estimation Problems Using Krylov Subspace Methods

In the paper we show how, based on the preconditioned Krylov subspace methods, to compute the covariance matrix of parameter estimates, which is crucial for efficient methods of optimum experimental design. Mathematics Subject Classification (2000). Primary 65K10; Secondary 15A09, 65F30.

متن کامل

IFKSA-ESPRIT - Estimating the Direction of Arrival under the Element Failures in a Uniform Linear Antenna Array

This paper presents the use of Inverse Free Krylov Subspace Algorithm (IFKSA) with Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) for the Direction-of-Arrival (DOA) estimation under element failure in a Uniform Linear Antenna Array (ULA). Failure of a few elements results in sparse signal space. IFKSA algorithm is an iterative algorithm to find the dominant eigenva...

متن کامل

Direction of Arrival Estimation using a Sparse Linear Antenna Array

1057 Abstract—This paper presents the use of Inverse Free Krylov Subspace Algorithm (IFKSA) with Estimation of Signal Parameter via Rotational Invariance Technique (ESPRIT), for Direction-of-Arrival (DOA) estimation using a Sparse Linear Array (SLA) of antenna elements. The use of SLA reduces the hardware requirements and the production cost. The SLA generates the sparse data, the pure signal s...

متن کامل

Krylov Approximation for Multi-user Detection with Parallel Interference Cancellation in Chip and User Space

Iterative multi-user detection and time-variant channel estimation in a multi-carrier (MC) code division multiple access (CDMA) uplink requires high computational complexity. This is mainly due to the linear minimum mean square error (MMSE) filters for data detection and time-variant channel estimation. We develop an algorithm based on the Krylov subspace method to solve a linear system with lo...

متن کامل

An Estimation of Single-Synchronized Krylov Subspace Methods with Hybrid Parallelization

We evaluate performance of parallel computing of revised BiCGSafe and BiCGStar-plus method. Through several numerical experiments, we will make clear that the revised single synchronized BiCGSafe method outperforms other methods from the view points of elapsed time and speedup on parallel computer with distributed memory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2001